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Abstract
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1 Introduction

This paper is beneficial in understanding fundamental econometric concepts and,
more specifically, avoiding spurious regressions and misinterpretations of Eviews
outputs. It intends to become a useful guide for economists desiring to conduct
proper estimations through Eviews. The data and replication files are available
online.

2 Ordinary Least Squares

The Ordinary Least Squares (OLS) method is one of the most used estimation
techniques, both in research and industry. This linear least-squares method esti-
mates the unknown parameters in a linear regression model: it chooses the pa-
rameters of a linear function of a set of explanatory variables by minimizing the
sum of the squares of the differences between the observed dependent variable!
in the given dataset and those predicted by the linear function.

Before starting coding or writing, always ask this question: which research
question do I want to answer? If the objective is to understand the connection
and causalities between x; and y;, which are two economic variables, the corre-
sponding data (time series) have to be available for your study.

For instance, how energy and consumer prices are related? To answer this,
we have to select the relevant data corresponding to the research question. We
choose the Domestic Producer Prices Index (Manufacturing) for Israel (x;) and
the Consumer Price Index Energy for Israel (y;) to analyze this question.? Our
analyses span from August 1997 to May 2017, at a monthly frequency.

2.1 Stationarity

In order to use stationary time series without affecting our results by seasonal ef-
fects, we compute the percentage growth of these two seasonally-adjusted® time
series, dx; and dy;. Table 1 presents the stationarity tests based on Dickey and
Fuller (1979).

Table 1 shows that our time series, dx; and dy;, are stationary. This property
is essential* for OLS estimation, as we will see below.

Values of the variable being predicted.

2Energy includes electricity, gas and other fuels & fuels and lubricants for personal transport
equipment. It excludes water. Energy is 7.309 % of the CPI all items in 2008.

3We adjust for seasonality by using X12-ARIMA(0,1,1).

4Gtationarity is even a necessary condition for a non cointegration analysis.


http://www.jonathanbenchimol.com/data/research/codes/EVIEWS.zip
http://www.jonathanbenchimol.com/data/research/codes/EVIEWS.zip
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Additional stationarity tests exist, namely the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) and the Phillips-Perron (PP) tests. All three tests should be con-
ducted as a robustness check for stationarity.

Like an Augmented Dickey-Fuller (ADF) test, the null hypothesis for the PP
test is that the series possesses a unit root and is not stationary. One distinct
advantage of the PP over the ADF test is that it is a non-parametric test. Con-
sequently, it applies to a broad set of problems. The ADF test uses a parametric
autoregression to approximate the series’s error process, whereas the PP test does
not assume such a functional form of the errors. The PP test also adjusts for ser-
ial correlation and heteroscedasticity in the errors by modifying the test statistic.
A disadvantage of the non-parametric PP test is that it requires a large sample
size as it relies upon asymptotic theory, and large datasets are not always readily
available.

For the KPSS test, the null hypothesis is that the series is stationary, i.e., does
not possess a unit root. The KPSS test treats errors similar to the PP test, considers
the case of a general error process (assuming no functional form), and suitably
modifies the test statistic like in the PP test.

2.2 Causality

A pairwise Granger (1969) causality test is presented in Table 2 and shows that
we cannot reject the hypothesis that dy; does not Granger cause dx; but we do
reject the hypothesis that dx; does not Granger cause dy;. Therefore it appears
that Granger causality runs one-way from dx; to dy; and not the other way.

Table 2. Granger Causality

Lags: 2

Null Hypothesis: Obs F-Statistic Prob.
dy: does not Granger Cause dx; 235  1.64321  0.1956
dx; does not Granger Cause dy; 7.50906  0.0007

Note: Pairwise Granger causality tests between dx; and dy;.

In other but more precise words, Table 2 shows that dx; statistically causes

dyt.



2.3 Correlogram

Table 3 presents the correlograms of dx; and dy;. The autocorrelation of the series
dx; is not very big at lag one, and quasi inexistent in the next lags. The partial
autocorrelation of the series dx; is quasi inexistent. However, the Ljung and Box
(1978) Q-statistics and their p-values show that the series contains some autocor-
relation at several orders. This correlogram could motivate the use of an AR(1)
component to the next estimations, including dx; as the variable to explain.

Table 3 shows there is no autocorrelation nor partial autocorrelation for the
series dy;.

2.4 Linear Estimation

Assuming that related assumptions concerning the OLS regression are verified,
the results presented in Table 4 show a significant relationship between dx; and
dy;, with a good coefficient of determination® (Adjusted R2 around 0.63) and

without autocorrelation of order one.?

2.5 Validation

Our OLS regression satisfies all the linear regression assumptions presented be-
low and is significant according to statistics examined about the regression (Ad-
justed R2, Durbin-Watson, t-stat/p-values) as well as about the residuals (cf.
above).

2.5.1 Strict Exogeneity and Normality of the Residuals

Fig. 1 shows that residuals are normally distributed with a quasi-zero average.
The Jarque-Bera test confirms residuals” skewness and kurtosis match a normal
distribution.

2.5.2 Linear Dependence

According to a simple cross-correlation between the two series (Table 5), there is
no collinearity between our variables.

5The coefficient of determination is explained in Section 3.3.
6The Durbin and Watson (1950, 1951, 1971) test is close to 2.
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Table 4. CPI Energy: Estimation

Dependent Variable: dy;

Method: Least Squares

Sample (adjusted): 1997M09 2017M05
Included observations: 237 after adjustments

Variable Coefficient Std. Error t-Statistic =~ Prob.
C -0.034746  0.082221 -0.422586  0.6730
dx; 1.614157  0.080687  20.00522  0.0000
R-squared 0.630043 Mean dependent var  0.307295
Adjusted R-squared  0.628469  S.D. dependent var  2.031241
S.E. of regression 1.238110  Akaike info criterion  3.273452
Sum squared resid 360.2353  Schwarz criterion 3.302718
Log likelihood -385.9041 Hannan-Quinn criter. 3.285248
F-statistic 400.2090  Durbin-Watson stat ~ 2.175794
Prob(F-statistic) 0.000000

Note: estimation of dy;.

Figure 1. Histogram of Residuals

30

Series: Residuals
Sample 1997M09 2017M05
25 1 Mo Observations 237
20 ] Mean 1.53e-16
| Median 0.029670
| Maximum 4.156031
15 Minimum -5.167318
Std. Dev. 1.235484
— Skewness -0.452425
107 Kurtosis 4.901792
5 Jarque-Bera  43.80122
’_I_l_w Probability 0.000000
O "_‘\ T "_“ T "_!_“ I L L L L L L \’_“
-5 -4 -3 -2 -1 0 1 2 3 4

Note: the skewness measures the asymmetry of the distribution relative to the
average. While it differentiates extreme values in one versus the other tail, kur-
tosis measures extreme values in either tail.



Table 5. Simple Cross-correlations

~.

dxe,dys—;  dxp,dys lag lead

|>e>(->e>e>e>f>e>e | |>e>(->e>e>e>f>e>e |

0 0.7938 0.7938
Iy 1 1 02105 0.2238
N 1% 2 0.0291 0.0694
1 1 3 0.0006 0.0148
N N 4 00417 0.0016
%] 1 5 01123 -0.0334

Note: simple cross-correlation between dx; and dy;. Correlations are asymptoti-
cally consistent approximations.

2.5.3 Homoscedasticity

There is no heteroscedasticity according to several heteroscedasticity tests pre-
sented in Table 6.

2.5.4 Autocorrelation

According to a correlogram of the residuals, there is no autocorrelation for all
lags considered. This is also the case when testing the square of the residuals
(not displayed).

3 Generalized Method of Moments

The starting point of the Generalized Method of Moments (GMM) estimation is
a theoretical relation that the parameters should satisfy. The idea is to choose
the parameter estimates so that the theoretical relation is satisfied as “closely”
as possible. Its sample counterpart replaces the theoretical relation, and the esti-
mates are chosen to minimize the weighted distance between the theoretical and
actual values. GMM is a robust estimator in that, unlike maximum likelihood
estimation, it does not require information about the exact distribution of the
disturbances. In fact, many common estimators in econometrics can be consid-
ered as special cases of GMM.

The theoretical relation that the parameters should satisfy are usually orthog-
onality conditions between some (possibly nonlinear) function of the parameters



‘§ 9[qe], ur pajussard uonewr)ss oy} SUIMOT[0F S3S9) AJDTISLPASOIDIdY 930N

1899250 (Pusnels-1)qoid 7698520 (Pusneis-1)qorg 68£65C°0 (dusners-g)qoid

T€6000C  ¥eIs UosyeMm-uqIng  6610%0 onsne)s-g TTES89'T  IeIs uosyem-uiqIng 1661871 ousneIs-{  6SSPIE’T  FeIs uosiepm-ulqIing  ££09/7'T onsuels-4
PPPLO0'S  IOILID UumMD-UeUUeH 295 H6S- pooyr1 8077 10891GH o1l UumQ-UeuueH  [¢Hg1ES- PooyIRA 80T 996650°G  IRID UUMQ-URUURH 80T 96S- pooyrI 8077
996¥80°¢ UOLIS}LID thgﬂum 9/8°1¢1C prsax UWHMSTm umg CTLIVES T UOLIS}LID thgﬂum €oCTECT prsox ﬁmhmsz uwmnmg 9¢¥y.LL0°S UOLIDILID ZIeMYDS 168°%C1C ﬁﬁmwh ﬁwum—a—um wng
I19950°G  UOLIDILD Ojul xIey  Z9I8I0'E uoIssa1391 JO “H'S G00S0SF ~ UOLIDILID Ojut XIEY  LG816T'T uoIssa13a1J0 'I'S  0LISP0'S  UOMSILID OJul 1LY 900£00°E uoIssa1391 JO “H'S
61EPI0e  Teajuwdpuadop ‘'S 1662000  parenbsy paysnlpy 9zeeece  teajuepwadap Qs geI1000  parembsyypesnlpy  $9/800¢  Teajudpuedop ‘@’ §9TI000  parenbs-y paisnlpy
$6Gh7G1  Tea juspuadap UBSN G000 porenbs-yy  ¢g08cI'T-  Teajuspusdep UBSN  GZFS000 parenbsy (086617  Teajuepuadsp ues)N  T0FS00°0 parenbs-yy
29760 0€0FE90  00£990°0  TOPIFO0 Tv(1-)arsad £86T0  FTTTELT  6SE6FT0  80T69T0 ixp 8660  8196TI'T  S96S6T°0  S9ETTTO ixp
00000 6698699  €910TT0  S6STI9¥'T o) 00000 €004F9°L 661TST'0  £98€9T'T- o) 00000  €S£9/€°L 1696610  €LOELYL o)
.n—Oum uﬁmﬁdumuu 1011 Uam aﬁmﬂu@wmou wﬁﬁ—d_hM\/ .QO.HL uﬁmﬂmamuu I01Tq —Oum uC@U@MQOU @T“—d_hﬁ\/ .@OHAH Uﬁmﬁﬁ-%# Joxrg ﬁam uﬁw_uwﬂwou Qﬁn—dim\/
muﬁmﬂbmﬂ_—um um«wm 9¢T ”mQOﬁN\waLO ﬁm@#&uGH VAY4 umGOEMNVHQmDO ﬁmﬁuﬂzuﬁm LET “mCOEﬂ\CwmQO UwﬁSMUCH

SONLTOT OTINZ66T :(parsnipe) ajduueg SOINLTOT 60INL661 :o1dures SOINLTOT 60INL661T o1dureg

sarenbg jsea :poyIOIN sarenbg jsea :poyION saxrenbg jsea] :poyIeN

TvAISTY :e[qerre Juapuadeq TAISTAT P[qerieA Juapuadaq TvaISHY :A[qerreA Juapuadaq

:uoryenby 3sa1, :uoryenby 3sap :uonyenby 3891,

8zhc0  (Darenbsyd ‘qord  68FH9ET  SS pauredxe pafeds Ziro  (1)erenbg-myd qoid  ££066%'T  SS paurejdxa payedsg

LF2s0  (Darenbsmyd qorgd  HELFOF0 parenbs-y,sq0 896’0 (narenbgmyd ‘qorg  £z8S8T1 parenbs-y,sq0 6£5C0  (1)arenbg-yd 'qoid  /B66LTT parenbs-y,sq0
£9T5°0 (FEC'DA "qO1d  F6610%°0 onsness-g /850 (S€T'D)A "q01d 1€618T'T onsnes-g 86SC°0 (SeT’DA "q01d  £€094T'T onspess-{

HDYV :1531, A)101Sepadso1do

AaArel] s3], AJID1ISEPI SO

Aarypony-ueSeg-yosnaig :1SaL AJID1ISEPINSOINI

53S9, A}IOT)SEPASOIDOL] "9 d[qeL



f () and a set of instrumental variables z;:
E[f(®)Z] =0 1)

where 0 are the parameters to be estimated. The GMM estimator selects para-
meter estimates so that the sample correlations between the instruments and the
function f are as close to zero as possible, as defined by the criterion function:

J(0) = (m (6))" Am (9) (2)

where m (6) = f () Z and A is a weighting matrix.

3.1 Instrumental Variables

The need for an instrument variable arises due to the endogeneity of the explana-
tory variable in a regression. An explanatory variable is said to be endogenous if
it is correlated with the model’s error term.

An instrument variable is one of the ways by which we can overcome the en-
dogeneity issue. An instrument variable needs to specify two critical properties:

e Instrument Exogeneity: The instrument should be uncorrelated with the
error term. It is not possible to test this assumption. One could argue in fa-
vor of Instrument Exogeneity by appealing to established economic theory
and behavior.

o Instrument Relevance: The instrument must be a valid proxy for the en-
dogenous explanatory variable. This can be tested by running a regression
of the endogenous variable on the instrument and assessing if the regres-

sion coefficient is significant.

When the number of Instrument Variables is as much as the number of En-
dogenous Variables, one of the methods used is the two-stage least squares (25LS)
method. For most statistical packages, including EViews, we have a single com-
mand to run a 25LS regression. One needs to specify the dependent variable, the
independent variable, and select a set of instruments. The interpretation of the
results is similar to that of an OLS regression.

It is generally good practice to conduct tests for endogeneity and compare
OLS and IV estimates. Provided that the choice of the instrument used is sound,
it will generally be the case that IV estimates will be unbiased whereas OLS es-
timates will only be unbiased under certain conditions (Cov(X,U) = 0). The null
hypothesis is that the variable is exogenous.

10



The three indicators and their threshold values for rejecting the null hypoth-
esis to look out for when doing these tests are as follows:

e Durbin-Waston (DW): Reject the null if value is greater than 10.
e Wu-Hausman (F-stat): Reject the null if value is greater than 10.

e Significance (p-value): A low p-value depending on the significance level.

Rejecting the Null Hypothesis suggest that the instrument variable is endoge-
nous.

3.2 J-statistic

The J-statistic is the minimized value of the objective function, where we report
Eq. 2 divided by the number of observations. This J-statistic may be used to carry
out hypothesis tests from GMM estimation. A simple application of the J-statistic
is to test the validity of overidentifying restrictions. Under the null hypothesis
that the overidentifying restrictions are satisfied, the J-statistic times the number
of regression observations is asymptotically x? with degrees of freedom equal to
the number of overidentifying restrictions.

If the equation excluding suspect instruments is exactly identified, the J-
statistic will be zero.

3.3 Coefficient of Determination

The Coefficient of Determination (R?) is a statistic that will give some information
about the goodness of fit of a model. In regression, the coefficient of determina-
tion is a statistical measure of how well the regression line approximates the real
data points. An R? value of 1.0 indicates that the regression line perfectly fits
the data. It's often a suspicious result. As presented in Table 7, an acceptable
value for R? is superior to 0.5.

3.4 Adjusted Coefficient of Determination

The Adjusted Coefficient of Determination (Adjusted R?) is a modification of
R? that adjusts for the number of explanatory terms in a model. Unlike R?, the
Adjusted R? increases only if the new term improves the model more than would
be expected by chance. The Adjusted R? can be negative (in very poorly specified
regression equations.), and will always be less than or equal to R%. Adjusted R?
does not have the same interpretation as R?. As such, care must be taken in

11



interpreting and reporting this statistic. Adjusted R? is particularly useful in
the feature selection stage of model building. Adjusted R? is not always better
than R?: adjusted R? will be more useful only if the R? is calculated based on a
sample, not the entire population. For example, if our unit of analysis is a state,
and we have data for all counties, then Adjusted R? will not yield any more
useful information than R2.

3.5 Mean Dependent Variable

The value of the Mean Dependent Variable is the mean of the observations of the
dependent variable.

3.6 S.D. Dependent Variable

The value of the S.D. Dependent Variable is the estimated standard deviation of
the dependent variable.

3.7 S.E. of Regression

The S.E. of Regression is a summary measure of the size of the equation’s errors.
The unbiased estimate of it is calculated as the square root of the sum of squared
residuals divided by the number of usable observations minus the number of
regressors (including the constant). This measure should be closer to zero.

3.8 Sum of Squared Residual

The residual sum of squares (RSS) is the sum of squares of residuals. It is the
discrepancy between the data and our estimation model. As smaller this dis-
crepancy is, better our estimation will be.

3.9 Prob(F-statistic)

To test the success of the regression model, a test can be performed on R?. Usu-
ally, we accept that the regression model is useful when the Prob(F-statistic)
is smaller than the desired significance level, for example, 0.05 (for 5% signifi-
cance level).

12



3.10 Durbin-Watson Statistic

The Durbin-Watson statistic is a test statistic used to detect the presence of au-
tocorrelation in the residuals from a regression analysis. Its value always lies
between 0 and 4.

A value of 2 indicates there appears to be no autocorrelation. If the Durbin-
Watson statistic is substantially less than 2, there is evidence of positive serial
correlation and values much above 2 are indicative of the negative serial corre-
lation. As a rough rule of thumb, if the Durbin-Watson statistic is less than 1.0,
there may be cause for alarm. Small values of Durbin-Watson statistic indicate
successive error terms are, on average, close in value to one another, or pos-
itively correlated. Large values of Durbin-Watson statistic indicate successive
error terms are, on average, much different in value to one another, or negatively
correlated. How much below or above 2 is required for significance depends
on the number of usable observations and the number of independent variables
(excluding the constant).

The Durbin-Watson test is a test for first-order serial correlation in the resid-
uals of a time series regression. A value of 2.0 for the Durbin-Watson statistic
indicates that there is no serial correlation, but this result is biased toward the
finding that there is no serial correlation if lagged values of the regressors are

in the regression.

3.11 Determinant Residual Covariance

The Determinant residual covariance is the determinant of the residual covari-
ance matrix. If the determinant of the residual covariance matrix is zero, the
estimates are efficient. But, if a comparison of two determinants of each’s resid-
ual covariance matrix shows a value, for example, >100 for the original VAR and
a value near to zero for the log-VAR, then a linearly dependent covariance matrix
seems unlikely, the zero-value must be due to very small covariances (but these
are caused by the transformation into log-units, and must not be due to a real
improvement of the model).

4 Maximum-Likelihood

Maximum Likelihood Estimation (MLE) is a popular statistical method used to
calculate the best way of fitting a mathematical model to some data. Modeling
real-world data by estimating maximum-likelihood offers a way of tuning the
free parameters of the model to provide an optimum fit.

13



The likelihood and log-likelihood functions are the basis for deriving esti-
mators for parameters, given data. While the shapes of these two functions are
different, they have their maximum point at the same value. In fact, the value
of p that corresponds to this maximum point is defined as the Maximum Likeli-
hood Estimate (MLE). This is the value that is “mostly likely" relative to the other
values. This is a simple, compelling concept, and it has a host of good statistical
properties.

4.1 Log-Likelihood

The shape of the log-likelihood function is important in a conceptual way. If
the log-likelihood function is relatively flat, one can make the interpretation that
several (perhaps many) values of p are nearly equally likely. They are relatively
alike. This is quantified as the sampling variance or standard error. If the log-
likelihood function is fairly flat, this implies considerable uncertainty. This is
reflected in large sampling variances and standard errors, and wide confidence
intervals.

On the other hand, if the log-likelihood function is fairly peaked near its max-
imum point, this indicates some values of p are relatively very likely compared
to others. There is some considerable degree of certainty implied and this is re-
flected in small sampling variances and standard errors, and narrow confidence
intervals. So, the log-likelihood function at its maximum point is important as
well as the shape of the function near this maximum point.

4.2 Avg. Log-Likelihood

Average log-likelihood is the log-likelihood (i.e. the maximized value of the log
likelihood function) divided by the number of observations. The maximiza-
tion of the log-likelihood is the same as the maximization of the average log-
likelihood. This statistic is useful in order to compare models.

4.3 Akaike Information Criterion

Akaike’s Information Criterion (AIC) is a measure of the goodness of fit of an
estimated statistical model. It is grounded in the concept of entropy. The AIC is
an operational way of trading off the complexity of an estimated model against
how well the model fits the data.

The preferred model is the one with the lowest AIC value. The AIC method-
ology attempts to find the model that best explains the data with a minimum of
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free parameters. By contrast, more traditional approaches to modeling start from
a null hypothesis. The AIC penalizes free parameters less strongly than does the

Schwarz criterion.

4.4 Schwarz Information Criterion

The Bayesian information criterion (BIC) is a statistical criterion for model selec-
tion. The BIC is sometimes also named the Schwarz criterion, or Schwarz infor-
mation criterion (SIC). It is so named because Gideon E. Schwarz (1978) gave a
Bayesian argument for adopting it.

Given any two estimated models, the model with the lower value of BIC
is the one to be preferred. The BIC is an increasing function of residual sum of
squares and an increasing function of the number of free parameters to be esti-
mated (for example, if the estimated model is a linear regression, it is the number
of regressors, including the constant). That is, unexplained variation in the de-
pendent variable, and the number of explanatory variables increase the value
of BIC. Hence, lower BIC implies either fewer explanatory variables, better fit,
or both. The BIC penalizes free parameters more strongly than does the Akaike
information criterion.

4.5 Hannan-Quinn Information Criterion

Ideally, AIC and SBIC should be as small as possible (note that all can be nega-
tive). Similarly, the Hannan-Quinn Information Criterion (HQIC) should also
be as small as possible. Therefore the model to be chosen should be the one with
the lowest value of information criteria test.

4.6 Determinant Residual Covariance

Maximizing the likelihood value is equivalent to minimizing the determinant of
the residual covariance matrix. Thus, the determinant of the residual covariance
matrix and not the residuals itself are minimized. As smaller this determinant
is, better our estimation will be.

5 Summary table

Summarizing all the statistical output generated following an estimation or a
statistical test is impossible. Table 7 intends to provide a clue about some test
results often used in the regular practice of econometrics and statistics.
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Table 7. Summary Table
Type | Optimal | Acceptable

R? and Adjusted R? | — 1 > 0.5
J-statistic | — 0 < 0.1
Mean Dependent Variable | — 400 > 100
S.E. of Regression — 0 Choose the lower value (comparison)
Residual Sum of Squares | — 0 Choose the lower value (comparison)
Prob(F-statistic) | — 0 < 0.05
Durbin-Watson Statistic | — 2 1.8 < DW < 2.2 (Under conditions)
Determinant Residual Covariance | — 0 Choose the lower value (comparison)

Log-Likelihood | — +c0 | > 103
Average Log-Likelihood | — +c0 | > 10
AIC | - —o0 Choose the lower value (comparison)
SIC | —» —o0 Choose the lower value (comparison)
HQIC — — 0 Choose the lower value (comparison)

Note: the values provided in the right column are only indicative. They can
change with respect to the type of econometric exercise.
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